On Morita’s Fundamental Theorem for C−algebras
نویسنده
چکیده
We give a solution, via operator spaces, of an old problem in the Morita equivalence of C*-algebras. Namely, we show that C*-algebras are strongly Morita equivalent in the sense of Rieffel if and only if their categories of left operator modules are isomorphic via completely contractive functors. Moreover, any such functor is completely isometrically isomorphic to the Haagerup tensor product (= interior tensor product) with a strong Morita equivalence bimodule. An operator module over a C∗−algebra A is a closed subspace of some B(H) which is left invariant under multiplication by π(A), where π is a *-representation of A on H . The category AHMOD of *-representations of A on Hilbert space is a full subcategory of the category AOMOD of operator modules. Our main result remains true with respect to subcategories of OMOD which contain HMOD and the C∗−algebra itself. It does not seem possible to remove the operator space framework; in the very simplest cases there may exist no bounded equivalence functors on categories with bounded module maps as morphisms (as opposed to completely bounded ones). Our proof involves operator space techniques, together with a C∗−algebra argument using compactness of the quasistate space of a C∗−algebra, and lowersemicontinuity in the enveloping von Neumann algebra. Date: May, 1997. Revised June 1998. * Supported by a grant from the NSF. The contents of this paper were announced at the joint meeting of the Canadian Operator Algebra Symposium, and the Great Plains Operator Theory Seminar, May 17-22, 1997. 1
منابع مشابه
Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملFrames in right ideals of $C^*$-algebras
we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.
متن کاملGlobal fixed points for centralizers and Morita’s Theorem
We prove a global fixed point theorem for the centralizer of a homeomorphism of the two dimensional disk D that has attractor-repeller dynamics on the boundary with at least two attractors and two repellers. As one application, we show that there is a finite index subgroup of the centralizer of a pseudo-Anosov homeomorphism with infinitely many global fixed points. As another application we giv...
متن کامل